第1部分(第3/4 页)
形状的客体,而这些客体无疑是产生这些观念的唯一渊源。几何学应避免遵循这一途径,以便能够使其结构获得最大限度的逻辑一致性。例如,通过位于一个在实践上可视为刚性的物体上的两个有记号的位置来查看“距离”的办法,在我们的思想习惯中是根深蒂固的。如果我们适当地选择我们的观察位置,用一只眼睛观察而能使三个点的视位置相互重合,我们也习惯于认为这三个点位于一条直线上。
如果,按照我们的思想习惯,我们现在在欧几里得几何学的命题中补充一个这样的命题,即在一个在实践上可视为刚性的物体上的两个点永远对应于同一距离(直线间隔),而与我们可能使该物体的位置发生的任何变化无关,那么,欧几里得几何学的命题就归结为关于各个在实践上可以视为刚性的物体的所有相对位置的命题。作了这样补充的几何学可以看作物理学的一个分支。现在我们就能够合法地提出经过这样解释的几何命题是否“真理”的问题;因为我们有理由问,对于与我们的几何观念相联系的那些实在的东西来说,这些命题是否被满足。用不太精确的措词来表达,上面这句话可以说成为,我们把此种意义的几何命题的“真实性”理解为这个几何命题对于用圆规和直尺作图的有效性。
当然,以此种意义断定的几何命题的“真实性”,是仅仅以不太完整的经验为基础的。目下,我们暂先认定几何命题的“真实性”。然后我们在后一阶段(在论述广义相对论时)将会看到,这种“真实性”是有限的,那时我们将讨论这种有限性范围的大小。
2.坐标系
根据前已说明的对距离的物理解释,我们也能够用量度的方法确立一刚体上两点间的距离。为此目的,我们需要有一直可用来作为量度标准的一个“距离”(杆S)。如果A和B是一刚体上的两点,我们可以按照几何学的规则作一直线连接该两点:然后以A为起点,一次一次地记取距离S,直到到达B点为止。所需记取的次数就是距离AB的数值量度,这是一切长度测量的基础。
描述一事件发生的地点或一物体在空间中的位置,都是以能够在一刚体(参考物体)上确定该事件或该物体的相重点为根据的,不仅科学描述如此,对于日常生活来说亦如此。如果我来分析一下“北京天安门广场”这一位置标记,我就得出下列结果。地球是该位置标记所参照的刚体;“北京天安门广场”是地球上已明确规定的一点,已经给它取上了名称,而所考虑的事件则在空间上与该点是相重合的。
这种标记位置的原始方法只适用于刚体表面上的位置,而且只有在刚体表面上存在着可以相互区分的各个点的情况下才能够使用这种方法。但是我们可以摆脱这两种限制,而不致改变我们的位置标记的本质。譬如有一块白云飘浮在天安门广场上空,这时我们可以在天安门广场上垂直地竖起一根竿子直抵这块白云,来确定这块白云相对于地球表面的位置,用标准量杆量度这根竿子的长度,结合对这根竿子下端的位置标记,我们就获得了关于这块白云的完整的位置标记。根据这个例子,我们就能够看出位置的概念是如何改进提高的。
(1)我们设想将确定位置所参照的刚体加以补充,补充后的刚体延伸到我们需要确定其位置的物体。
(2)在确定物体的位置时,我们使用一个数(在这里是用量杆量出来的竿子长度),而不使用选定的参考点。
(3)即使未曾把高达云端的竿子竖立起来,我们也可以讲出云的高度,我们从地面上各个地方,用光学的方法对这块云进行观测,并考虑光传播的特性,就能够确定那需要把它升上云端的竿子的长度。
从以上的论述我们看到,如果在描述位置时我们能够使用数值量度,而不必考虑在刚性参考物体上是否存在着标定的位置(具有名称的),那就会比较方便。在物理测量中应用笛卡儿坐标系达到了这个目的。
笛卡儿坐标系包含三个相互垂直的平面,这三个平面与一刚体牢固地连接起来。在一个坐标系中,任何事件发生的地点(主要)由从事件发生的地点向该三个平面所作垂线的长度或坐标(x;y;z)来确定,这三条垂线的长度可以按照欧几里得几何学所确立的规则和方法用刚性量杆经过一系列的操作予以确定。
在实际上,构成坐标系的刚性平面一般来说是用不着的;还有,坐标的大小不是用刚杆结构确定的,而是用间接的方法确定的。如果要物理学和天文学所得的结果保持其清楚明确的性质,就必须始终按照上述考虑来寻求位置标示的物理意义。
本章未完,点击下一页继续。