第1部分(第2/4 页)
时空观。
爱因斯坦着手建立一个统一的物理理论。他把伽利略力学运动的相对性原理扩展开来,使之包括所有物理定律。把它提升为公理;又把观测和实验得来的光速不变也提升为公理。如果两者同时成立,不同的惯性系的各个坐标之间必然存在一种确定的数学关系,这就是洛伦兹变换。通过这种变换,他推导出,运动的尺子要缩短;运动的钟要变慢;任何物体的运动速度都不能超过光速。由这个理论来看,以前的矛盾都解决了,古典力学定律成了物体在低速运动时的一种极限情况。自然现象在运动学方面显示出统一性。这就是“狭义相对论”。
相对论不仅引起了时空观的革命,也带来了整个物理学的革命,产生了深远的影响。其中最突出的,是关于物体的质量和能量相对性的推论,即E=mc2。这为以后原子弹的制造、核能的和平利用打下了理论基础。
1916年发表的《广义相对论的基础》则完成了现代物理学大厦的封顶工作。爱因斯坦发现,现实的有物质存在的空间,不是平坦的欧几里德空间,而是弯曲的黎曼空间;空间的弯曲程度取决于物质的质量及其分布状况,空间曲率就体现为引力场的强度。这就在更深一层意义上否定了牛顿的绝对时空观。广义相对论实质上是一种引力理论,它把几何学与物理学统一起来,用空间结构的几何性质来表述引力场。它同牛顿的引力论有本质的不同,但在日常人们接触到的现象中却分辨不出两者结果的差异。爱因斯坦提供了三个可供实验验证的推论。第一是水星近日点的进动,这在当时就得到完满解决。第二,在强引力场中,时钟要走得慢些,因此从巨大质量的星体表面射到地球上的光的谱线,必定显得要向光谱的红端移动。这在1925年得到观测验证。第三,光线在引力场中的偏转。这在第一次世界大战结束后的对日全食的观测中得到了验证,使广义相对论顷刻间闻名于世。
在这本书的第三部分,爱因斯坦应用他的理论对宇宙的模式进行了一些探讨。
爱因斯坦不仅在科学上做出了如此杰出的贡献。他热爱和平、曾经给罗斯福总统写信,敦促美国研制原子弹,赶在法西斯成功之前,用以结束战争。他性格既骄傲又谦虚,在自己的领域他很自负。当以色列国成立时,国家邀请他出任总统,他拒绝了。他还是一位比较出色的小提琴演奏家,在思考的间隙,他会在美妙的琴声中迷醉一会儿,这也许是使他的理论变得那么美丽的原因之一。
第一部分 狭义相对论
1.几何命题的物理意义
阅读本书的读者,大多数在做学生的时候就熟悉欧几里得几何学的宏伟大厦。你们或许会以一种敬多于爱的心情记起这座伟大的建筑。在这座建筑的高高的楼梯上,你们曾被认真的教师追迫了不知多少时间。凭着你们过去的经验,谁要是说这门科学中的那怕是最冷僻的命题是不真实的,你们都一定会嗤之以鼻。但是,如果有人这样问你们,“你们说这些命题是真实的,你们究竟是如何理解的呢?”那么你们这种认为理所当然的骄傲态度或许就会马上消失。让我们来考虑一下这个问题。
几何学是从某些象“平面”、“点”和“直线”之类的概念出发的,我们可以有大体上是确定的观念和这些要领相联系;同时,几何学还从一些简单的命题(公理)出发,由于这些观念,我们倾向于把这些简单的命题当作“真理”接受下来。然后,根据我们自己感到不得不认为是正当的一种逻辑推理过程,阐明其余的命题是这些公理的推论,也就是说这些命题已得到证明。于是,只要一个命题是以公认的方法从公理中推导出来的,这个命题就是正确的(就是“真实的”)。这样,各个几何命题是否“真实”的问题就归结为公理是否“真实”的问题。可是人们早就知道,上述最后一个问题不仅是用几何学的方法无法解答的,而且这个问题本身就是完全没有意义的。我们不能问“过两点只有一直线”是否真实。我们只能说,欧几里得几何学研究的是称之为“直线”的东西,它说明每一直线具有由该直线上的两点来唯一地确定的性质。“真实”这一概念有由该直线上的两点来唯一地确定的性质。“真实”这一概念与纯几何这一论点是不相符的,因为“真实”一词我们在习惯上总是指与一个“实在的”客体相当的意思;然而几何学并不涉及其中所包含的观念与经验客体之间的关系,而只是涉及这些观念本身之间的逻辑联系。
不难理解,为什么尽管如些我们还是感到不得不将这些几何命题称为“真理”。几何观念大体上对应于自然界中具有正确
本章未完,点击下一页继续。