第10部分(第1/4 页)
的缓慢衰减。
根据爱因斯坦理论所作的计算与在12年里仔细记录的观测结果精确相符。大多数其他的引力理论则与这些观测不符。PSR1913+16的轨道周期每年减小兀毫秒,在大约3亿年里两颗中子星将碰在一起,并产生最后的引力辐射爆发。
星震
还有另外一个改变脉冲星旋转状态的现象,但这次是一种加速星体的突然事件,称为频率突增(这个词取自电子学,是指一种使本来运行完好的部件受到影响的短暂突发事件)。它在几天里使脉冲星的周期减小十万分之一秒(即使旋转速度增大,图24)。船帆座脉冲星在1969年2月突然转快,在1971年和1976年又先后发生了两次。其他几个脉冲星也有过频率突增的现象,包括蟹状星云脉冲星。但是旋转速度的这种突然增长是很小的,大约一个月后,由于磁制动导致的自然减慢,中子星又恢复突增前的旋转速度。
这种频率突增现象能用由不稳定性所导致的、影响中子星外壳并急剧改变其转动惯量的“星震”来解释。一个快速旋转的中子星,其两极处会稍微变平,赤道上会稍微张大,随着时间的增长,这种变形所引起的表面张力会变得非常大,表面就会被无情地撕裂,以实现再调整。裂缝虽只有毫米量级,释放的能量却大得惊人:中子星的震动可达里氏25级(里氏级是用来量度地震所释放的能量的,每增大一级表示能量增大20倍),而地球上记录的最剧烈震动从未超过8.9级。
但是,船帆座脉冲星已经历几次星震的事实引起了一些天体物理学家对表面震动模型可靠性的怀疑,因为这种模型所预计的两次震动之间的间隔应是数百年而不是数年。现已提出对频率突增的其他解释,包括对中子星结构的根本性修改:中子星深层的湍流运动,或甚至是其核心的“相变”(类似于由液态变成固态),都会迫使其外壳重新调整。
频率突增的确能提供关于中子星内部结构详情的重要信息,这是一个天文观测为粒子物理提供帮助的极好例证。那么,我们对中子星的内部结构究竟知道多少呢?
中子星内部
乍看之下,中子星就是一个巨大的原子核。不同的只是,中子星是由引力来维持的,原子核则依靠核力。
在中子星内,在只不过是几公里的距离上,引力是如此之强,它能把物质固定在非常确定的结构中。主要表现之一是表面上的所有不规则性都被消除,中子星上最高的山峰只有几厘米高。所有导致脉冲星电磁辐射的现象都发生在一个热到1000万度的薄薄外层。
中子星的内部结构仍在猜测之中,一种可能的描述如图万所示。星体由一层1公里厚的铁壳包着,铁原子核组成的固体晶格沉浸在简并电子海里,密度由每立方厘米1吨(正是白矮星的密度)向内增至每立方厘米40万吨。
往下是“慢层”。这一层中越向内深入,铁核中包含的中子就越多,但同时又越难以保持住,中子在一定程度上发生衰变。在大约5公里的深处,中子从核中逃离,在简并海中分解,产生的质子簇在这个海中漂浮,密度增大到每立方厘米1亿吨。
在大约10公里的深处,中子物态成为星体的最重要成分。难以置信的压力使晶体结构液化为主要由中子、质子和电子组成的液体。这种液体可能是超流体,一种具有奇特性质的理想流体:完全没有粘滞。粘滞总是趋于消除液体中的任何不规则性,因此蜂蜜的粘滞性就比水大,而超流体里的一个旋涡能保持数月之久(实验室里可以把氦冷却到很接近于绝对零度而变成超流体)。
最后是半径约为1公里的固体核心,其组成还远不能确定,因为我们对在超过每立方厘米10亿吨的高密度下物质可能存在的状态还几乎一无所知。但是我们仍能像对在原子核中发现的基本粒子的性质那样进行推测,各种有着奇怪名称的模型已被发明出来:固体中子晶格,介子凝聚体,夸克物质,强子汤,等等。
致密物质的奥秘
中子星的温度、密度、压强和磁场等极端条件是实验室里不可能复制出来的,因而为核物理、原子物理、等离子体物理、相对论和电动力学等现代物理学科展开了崭新的视野。
我们已经清楚地看到,为了描述中子星的内部,就必须将未能揭开高密度物质奥秘的实验物理予以扩展。迄今对致密物质的状态方程(即支配热力学量变化的定律,例如压强可以表示为密度或其他量的函数)还几乎一无所知,但是,它应当是限制在两个极端情况之间,一个极端是自