第4部分(第1/4 页)
没有认识到,进化发生在包含着不同基因的“基因库”中,一个基因有时被复制,有时会丢失。
在药学和果蝇变异研究这两个完全不同的背景下,为了解读不同人群的相互关系,卡瓦利…斯福扎开始研究血液多态性,他的研究被后来的遗传学家们称为“经典的多态性”。那是20世纪的50年代,正是遗传学迅猛发展的时期,温斯顿和克瑞克①刚刚破译了DNA结构,自然科学的方法论推动了生物学的革命。和大多数遗传学家一样,卡瓦利…斯福扎在研究中应用了迅速发展的生物化学技术,但与他们不同的是,他同时应用了数学和统计学。多态性研究中出现的大量令人头晕目眩的数据,亟需一个内在连贯的理论系统,来分析和归纳这些数据。对统计学的应用,就像是在攀岩中有了结实的绳索。
想象一下一组基因变异的画面:河床上遍布色彩各异的石头,大小如蜗牛壳,与果蝇的翅膀等长。一眼望去,这些变异似乎毫无规则、互不联系,如果在它们背后加上不同的背景,它们会变得更加复杂、混乱,多样性究竟在向我们展示着什么?
20世纪50年代,面对自然的多样性,大多数生物学家下意识的反映是这出于自然选择的结果,对人类的多样性也不例外,就此优生学家已经说了很多。这一结果,很大程度上是因为人们确信有“自然类型”与“突变异种”之区别。自然类型是指一切“正常”的有机体,一些遗传性疾病(显然是“异常的”)似乎也证实这种观点是正确的。这些与遗传性疾病有关的基因,是最早被确定为变异基因的,因为按照达尔文的进化论,人可以被分为“适者”和“不适者”,遗传性疾病患者显然是“不适者”。但是,新的转变出现了:20世纪50年代,在美国从事研究的日本遗传学家木村资生,在遗传学的分析计算中使用了分析气体传播的方法,他继续沿着卡瓦利…斯福扎所开创的道路前行,他的努力最终将遗传学带离了“突变异种”的沼泽。
木村资生注意到,由于随意取样的误差,人群基因多态性的频率会发生变化,这正是前文中所提到的“漂移”,在他的理论中令人兴奋的是,他发现漂移对基因变化频率的改变似乎是可以预测的。研究自然选择的困难之处,是产生进化改变的“速度”完全取决于选择的“强度”,假如基因变异与自然完全适合,那么它便会以很高的速率繁殖。但是,自然选择的强度是无法用实验测量的,因此变化的速率是无法预测的。在抛硬币的例子里,抛起10次得到了7∶3的结果,假定硬币的正面代表一个基因变异,反面代表另一种,每一代的变化速率从50%增加到70%,意味着极强的对“正面”的选择。很显然,尽管这只是假设,但“正面”的比率增加到70%,与“正面”是否适应自然是没有关系的。
这就是木村资生的独特见解,他认为大多数多态性都是以这种方式产生的:在与自然选择的关系中,它们是自由的,因此它们是进化过程的“中立者”。围绕这一理论,生物学家们的争论非常激烈。木村资生和他的拥护者认为,几乎所有的基因变异都与自然选择无关,但许多科学家仍然坚持认为它是自然选择的关键环节。尽管如此,漂移理论为多态性的研究打开了一个崭新的窗口。在新变化到来之前,让我们先回到中世纪,去作一次短暂的停留。
。 最好的txt下载网
“奥卡姆的剃刀”
奥卡姆的威廉(1285~1349年)是中世纪的学者,他是一名修士,坚信亚里士多德的观点:自然界选择最短的道路。利用一切机会,他与同事们就他个人对这个观点的理解进行辩论。著名的“奥卡姆的剃刀”原理为“如无必要,勿增实体”,在本质上,这个原理是关于宇宙的哲学观,即吝啬定律(亦称朴素定律)。在现实世界中,假如特定的事件均由特定的可能性引起,那么多个事件便由多个可能性引起,因此,复杂的事件不如简单的事件可靠。这一原理的核心是将自然世界的复杂性,分割成可理解的几个部分,趋向简单,避免复杂。以这个原理为指导,一个人要从迈阿密到纽约,他会选择从迈阿密直接飞往纽约,而不是绕行上海。
也许确定行程计划只是举手之劳,但在黑暗的科学世界,要确定从何时何处着手却非易事。我们如何知道自然界永远选择最短、最简单的道路?“朴素”是自然界自我证明的语言?这本书的目的不是讨论朴素定律,但是种种迹象显示:自然常常趋向简单而避免复杂,尤其是当变化发生时。想一想一块石头从悬崖落到山谷时所选择的路线!自然界的引力,使它直接从高处快