第133部分(第3/4 页)
,并且后来陆续提高到了一年100万美元。直到2006年底辛顿遇到了他的贵人他的阶段性成果被谷歌公司看上了,然后一下子上千万美金地砸,立刻让研究速度突飞勐进。他的另一个助手、副教授则被扎克伯格的facebook挖走。这一格局才奠定了后来谷歌和fb双雄在人工智能领域的先发优势。
因为杰夫辛顿对人工智能的巨大贡献,这些细节都被记在了史书里,所以顾诚这个穿越客都知道。
顾诚一直以为他知道的史,就是史的全部了。
然而,今天看了多伦多校方发来的资料之后,顾诚才发现,原来多伦多系之所以能培养出杰夫辛顿这样的大牛,也是有其必然性的,尤其是基础的学术土壤和氛围上,积累非常好。
比如,目前林志凌手头的便笺上提到的史蒂芬。库克教授,就属于那个“虽然没开成肉联厂,但是至少养了一群猪”的角色。他对“计算复杂性理论”和“np穷尽理论”的贡献,才促成了后来多伦多系在人工智能领域的百家争鸣。
“志凌姐,我说你写,就这样回复此次我方考察准备讨论的议题好了:包括神经网络算法、遗传算法等模式在内的np完全性模型衍生……”
顾诚字斟句酌地说了一些在林志凌眼里像天书的内容,林志凌打完字之后还有点儿不敢相信,让顾诚亲自看了一遍,才把邮件回复了出去。
不一会儿,多伦多大学校办那边就收到了情况,然后第一时间由埃德蒙副校长转给了史蒂芬。库克教授。
“这家伙还懂这些议题?他有资格讨论么?”库克教授看得一愣,年近七旬的花白脑袋上,头发都被忽悠得一抖一抖。(未完待续。。)
第104章 每个领域都有天下第一
库克教授的主要研究方向“计算复杂性理论”,这种专业术语大多数人肯定听不懂,
用两句人话翻译一下,大致就是这样的:
首先,用一台电脑来假设人脑面对问题时的处理模型。比如,当一个人走进一个满是人群的礼堂时,想知道“礼堂里有没有我认识的人”这个问题的答案,那么他就得一步步搜寻,从头到尾一个个认,如果全部人看完都没有一个认识的人,才能得出“礼堂里没有我认识的人”。而只要找到一个认识的人,就能下“这里有我认识的人”的判断。
所以,常识一般认为,“从科学严谨的角度而言,证明一件事情比证伪一件事情要耗费更多的判断/计算资源,因为证伪只需要找到一个反例就可以结束论证、不再继续往下耗费计算资源。而证明需要推翻所有反例”。
可是实际情况下,人脑在“不刻意追求绝对科学严谨”的前提下,做很多大致粗略的判断时,要比电脑快得多。
比如让人看一张照片,判断照片上的东西是不是“猫”,人一眼就判断出了,而不需要去验证“图片上这个疑似猫的生物是否有xxxxx等生物学上的特征”。
换句话说,人类懂得如何抓大放小、用“模糊算法”尽快得到一个勉强可用、但不太严谨的结论。
而1980年代以前,人类根本就不知道如何让计算机“不严谨”。
所以计算机在求解一切问题时都是用严谨到爆的暴力算法硬扛的,导致很多因为分支可能性多到天量级别而无法穷尽的问题,计算机就没法解决。
比如围棋。因为哪怕以2010年代的计算机硬件运算速度,如果要暴力算法“科学严谨”地穷究一切可能性,全世界的计算机加起来分布式运算都算不动。所以在那种思想指导下,人类只能满足于“用暴力算法攻克国际象棋之类穷尽运算量也不大的脑力运动”。而平行时空的“阿尔法狗”干掉那么多高手,就绝对不能靠近乎低能儿蛮干的暴力算法。
斯蒂芬。库克的毕生研究,就是在解决“如何让计算机在资源不允许其彻底严谨的前提下、学会像人脑一样抓大放小、用有限的计算资源得到一个相对准确的大概结果”。
顾诚觉得,或许多伦多大学计算机系里,在库克麾下,藏着更多从不同角度试探这一领域的人才。而杰夫辛顿有可能只是因为历史的选择而恰好最早在人工智能领域出头引起了重视。
但这绝不代表这一体系内,其他分支的人才就没有价值了。
如果可以折服史蒂芬。库克教授,对于顾诚的全盘、系统挖人大计,显然是很有帮助的。
……
下午3点,密西沙加校区,神经网络实验室。
顾诚见到了早已收拾妥
本章未完,点击下一页继续。