第59部分(第1/4 页)
这对大质量恒星的终归宿具有重大的意义。如果一颗恒星的质量比强德拉塞卡极限小,它后会停止收缩并终于变成一颗半径为几千英里和密度为每立方英寸几百吨的“白矮星”。白矮星是它物质中电之间的不相容原理排斥力所支持的。我们观察到大量这样的白矮星。第一颗被观察到的是绕着夜空中亮的恒星——天狼星转动的那一颗。
兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中和质之间,而不是电之间的不相容原理排斥力所支持。所以它们被叫做中星。它们的半径只有1英里左右,密度为每立方英寸几亿吨。在中星被第一次预言时,并没有任何方法去观察它。实际上,很久以后它们被观察到。
另一方面,质量比强德拉塞卡极限还大的恒星在耗尽其燃料时,会出现一个很大的问题:在某种情形下,它们会爆炸或抛出足够的物质,使自己的质量减少到极限之下,以避免灾难性的引力坍缩。但是很难令人相信,不管恒星有多大,这总会生。怎么知道它必须损失重量呢?即使每个恒星都设法失去足够多的重量以避免坍缩,如果你把多的质量加在白矮星或中星上,使之过极限将会生什么?它会坍缩到无限密度吗?爱丁顿为此感到震惊,他拒绝相信强德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师、恒星结构的主要权威——爱丁顿的敌意使强德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。
强德拉塞卡指出,不相容原理不能够阻止质量大于强德拉塞卡极限的恒星生坍缩。但是,根据广义相对论,这样的恒星会生什么情况呢?这个问题被一位年轻的美国人罗伯特&p;#8226;奥本海默于1939年次解决。然而,他所获得的结果表明,用当时的望远镜去观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默本人非常密切地卷入到原弹计划中去。战后,由于大部分科学家被吸引到原和原核尺度的物理中去,因而引力坍缩的问题被大部分人忘记了。
现在,我们从奥本海默的工作中得到一幅这样的图象:恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端出后在空间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏折,在日食时观察远处恒星出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得多,从而使得光线从恒星逃逸变得为困难。对于在远处的观察者而言,光线变得黯淡红。后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去。根据相对论,没有东西会走得比光还。这样,如果光都逃逸不出来,其他东西不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。
当你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中没有绝对时间。每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩,按照他的表,每一秒钟一信号到一个绕着该恒星转动的空间飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径,此时引力场强到没有任何东西可以逃逸出去,他的信号再也不能传到空间飞船了。当11点到达时,他在空间飞船中的伙伴现,航天员来的一串信号的时间间隔越变越长。但是这个效应在1点59分59秒之前是非常微小的。在收到1点59分58秒和1点59分59秒出的两个信号之间,他们只需等待比一秒钟稍长一点的时间,然而他们必须为11点出的信号等待无限长的时间。按照航天员的手表,光波是在1点59分59秒和11点之间由恒星表面出;从空间飞船上看,那光波被散开到无限长的时间间隔里。在空间飞船上收到这一串光波的时间间隔变得越来越长,所以恒星来的光显得越来越红、越来越淡,后,该恒星变得如此之朦胧,以至于