第751部分(第1/4 页)
比如说,在微观世界上,虽然人类掌握的技术,已经能够把微观粒子在宏观世界里向低维度展开,并且通过调整微观粒子里的基本粒子结构,使其智能化,然后用来储存信息,理论上可以把一个人的信息完全储存在一颗智能化的微观粒子里面,但是在复原之后,微观粒子依然要受到光速限制,即在宇宙中的飞行速度无法超过光速,因此就算能够到达遥远的星系,同样得花费很多的时间。
从根本上看,这与“传送”技术没有区别。
又比如,在宏观世界里创造多维空间,首先就需要新的物理学基础理论,而基础理论又是最难以突破的科学壁垒。事实上,当时科学家甚至无法想像四维空间是个什么样子,只能猜测四维空间是无数个三维空间的集合,因此在四维空间里,可以很容易的从三维空间的一点到达另外一点,不受速度与时间的限制。可最关键的是,科学家根本就不知道该如何构筑四维空间。
显然,这些科学壁垒,已经使人类丧失了继续前进的动力。
所幸的是,在绝望之中,总会有希望,哪怕是极为渺茫的希望。
当时,最大的希望是一个早就被人类科学家证实,却无法实现的技术,即“空间跳跃”技术。
该技术的核心不是跳跃,而是设法折叠三维空间,让两个相距十分遥远的点重合,从而能够跨越距离,不受时间限制,从一个点到达另外一个点。
从某种意义上讲,这是一项非常振奋人心的技术。
要知道,这项技术最大的优势,就是不需要理论上的突破,人类已经掌握的物理学基础理论就足够了。
可同时,这又是一个十分让人沮丧的技术。
原因很简单,作为生活在三维空间里的三维生物,就像一个人不能在不借助器械的情况下把自己举起来一样,几乎不可能实现这项技术。纟T!~!
..
第三百零九章 危机与乐观
在其他路都走不通的情况下,当时人类中最顶尖的科学家把希望寄托在了“空间跳跃”技术上。
很长的一段时期内,这项技术都被整个人类文明看成是克服宇宙尺度障碍,向宇宙深处进军的希望。
当时,甚至有科学家预测,如果没能在“空间跳跃”取得重大突破,大约十万年之后人类的扩张就将达到顶点,然后遇到一个人类科技无论如何也不可能跨越的障碍,最终将因为资源枯竭而灭亡。当然,还得有一个前提条件,即在这十万年内,人类必须战胜遭遇到的所有外星文明。
毫无疑问,科学家的这个预测,绝对是杞人忧天。
这个预测的基础就是:银河系的直径大约就是十万光年,离银河系最近的恒星系统也在数万光年之外,比如大麦哲伦星系离银河系就有十多万光年、小麦哲伦星系离银河系有二十多万光年。更重要的是,这还是围绕银河系运转的河外恒星系统,也被称为矮恒星系统,或者说是银河系的“卫星”。在两个恒星系统之间,是荒凉的宇宙空间,人类建造的宇宙飞船没有一艘能够跨越这么远的距离。更重要的是,在恒星系统之前存在什么样的危险,完全无法预制。
事实上,肯定有危险。
比如,在对小麦哲伦星系进行研究的时候,科学家就得出了一个极为主要的结论,即小麦哲伦星系里的暗物质比银河系里的暗物质还要多。重力场理论已经指明,无法被人类观察到的暗物质,实际上就是空间能量。也就是说,小麦哲伦星系里的空间能量,要比银河系高得多。
显然,这不是一个可以让人高兴的科学结论。
要知道,小麦哲伦星系的可见物质只有银河系的百分之二,而其对银河系造成的扰动影响是其可见物质的近四十倍。由此就可推算出·小麦哲伦星系里有大量暗物质,其总量远远超过银河系。
那▲,暗物质、或者说是空间能量大量聚集,会产生什么想像呢?
科学家无法给出准确的答案·只能肯定一点,即小麦哲伦星系里的物理环境,很有可能与银河系不一样。说得直接一些,人类的宇宙飞船就算进入了小麦哲伦星系,也不见得能够正常航行。
从某种意义上讲,河外恒星系统都是危险之地。
当然,在广袤的宇宙中·并不缺乏像银河系这样的恒星系统。
根据科学家估计,虽然矮恒星系统的数量比恒星系统多得多,但是在宇宙中,类似与银河系的恒星系统就算没有一万亿个、也有一千亿个,而且这些恒星系统的物理学环境与银河系都非常